Verification of Conformity

Applicant: MEAN WELL ENTERPRISES CO., LTD.
No.28, Wuquan 3rd Rd., Wugu Dist., New Taipei City 248,
Taiwan (R.O.C.)

Product: Switching Power Supply
Model No.: NSD15-xyz
(x=12 or 48, y=S or D, z=3, 5, 12, 15)

On the basis of the tests undertaken, the sample(s) of the above product have been found to comply with the essential requirements of the referenced specifications at the time the tests were carried out.

The holder of the verification is authorized to use this document in connecting with the EC declaration of conformity is according to the Directives. The CE marking may only be used if all relevant and effective EC Directives are complied with. Together with the manufacturer's own documented production control, the manufacturer (or his European authorized representative) can in his EC Declaration of Conformity verify compliance with the Directives.

Harmonized Standards
EN 55011: 2009+A1: 2010 (Group 1, Class B)
EN 55022: 2010 (Class B)
EN 55024: 2010
EN 61204-3: 2000 (Low Severity Levels)
EN 61000-6-1: 2007
EN 61000-6-3: 2007+A1: 2011
EN 61000-3-3: 2008

Note: The equipment covered by this document is subject to mandatory compliance with the European Council Directive (2004/108/EC)

Issued By: JT Chen / General Manager
Date: Aug. 27, 2012
TOSHIBA Transistor Silicon NPN Triple Diffused Type (PCT process)

2SC5353

Switching Regulator and High Voltage Switching Applications
High-Speed DC-DC Converter Applications

- Excellent switching times: $t_r = 0.7 \mu s$ (max), $t_f = 0.5 \mu s$ (max)
- High collectors breakdown voltage: $V_{CEO} = 800$ V

Absolute Maximum Ratings ($T_c = 25^\circ C$)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-base voltage</td>
<td>V_{CBO}</td>
<td>900</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter voltage</td>
<td>V_{CEO}</td>
<td>800</td>
<td>V</td>
</tr>
<tr>
<td>Emitter-base voltage</td>
<td>V_{EBO}</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>Collector current DC</td>
<td>I_C</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>Collector current Pulse</td>
<td>I_{CP}</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>Base current</td>
<td>I_B</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Collector power dissipation $T_a = 25^\circ C$</td>
<td>P_C</td>
<td>2.0</td>
<td>W</td>
</tr>
<tr>
<td>Collector power dissipation $T_c = 25^\circ C$</td>
<td>P_T</td>
<td>25</td>
<td>W</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_J</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>T_{Stg}</td>
<td>-55 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc.).